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Problems of interaction of weak shock waves arise in many physical phenomena 
and also, for example, in the study of interaction of shock waves due to 
explosion of two charges or due to two fast flying projectiles. 

Problems of this type are very closely related to problems of reflection 
of weak shock waves. These investigations, as a rule, rely on utilization 
of theory of short waves developed in papers by Grib, Ryzhov and Khristian- 
ovich [l and 21. 

Utilizing basic premises of the theory of short waves, in this paper con- 
ditions for regular interaction of shock waves are examined, basic flow para- 
meters are determined at the point of interaction, and the critical relation- 
ship for initial values (of intensity and of interaction angle of shock 
waves) is found which characterizes conditions for regular interaction. For 
the value of overpressure at the point of interaction, the surface of depend- 
ence on initial values is constructed. In case of symmetrical interaction 
results of this investigation coincide with data of regular reflection of 
weak shock waves from a rigid wall [3]. 

1. We shall examine the case of a regular interaction of weak shock waves. 
Let two planar shock waves 
with overpressure 

OX, and OK. 
p1 and p2 propagate 

Fig. 1 

in a quiescp?t medium and let them inter- 
sect at a small angle 
the point of intersecti:n'of 

To this end 
shock waves 

describes trajectory RO with time. The 
origin of the cylindrical system of coor- 
dinates r, 6 is placed at point F1 
the point of initial interaction of tie 
shock waves. The axis 6=0 is 
directed along the tangent to the tra- 
jectory. For a sufficiently 
interval of time 

large 
t the pattern of pene- 

tration (Fig.11 will consist of incident 
fronts Or1, and OKa with constant 
;;~;~;es;~ean$l and PO and reflected 

OBZ where overpressure 
&;;:ases irom some value PO at the 

0 to p1 and Pa at points B1 
and Bs respectively. 

In the case pl= pa this gives a Pattern of symmetrical penetration which 
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ia analogous to regular reflection of shock waves from a rigid wall. The 
angles 0.. and a0 (between the normal to the trajectory of motion at the 
point 0 and the shock fronts) will be referred to as angles of incidence 
and 6 
fronts f 

and g1 (between the same normal and the tangents to the reflected 
will be called the angles of reflection. 

The constant intensity of shock waves . D and with respect to time 
the trajectory of motion of the point of interacti% will be rectilinear Qnd 
the entire pattern of penetration self-similar. It is therefore convenient 
for investigation of the flow in the vicinity of point 0 togo, aswas 
done in the theory of short waves [l and 21, over to nondimensional functions 
of velocity u and and the coordinates b , Y and which are rela- 
ted to the velocitiesVand coordinates of the cylindrical s&tern through the 
following relationships: 

1 27 - 
’ = MO VI/s (II + 1). MO a0 

(1.1) 

Here p, and 
“P 

are the pressure and velocity of sound in the quiescent 
medium, respective y, is the constant ratio of specific heats (for air 
pc- 1 atm and = lY4) El is some characteristic value of the quantity 

. In the case udder exa;inafion ffc is equal to the value of M at the 
point of intersection 0 . 

At shock fronts, conditions for the normal component of velocity H-&P, 
and conditions for conservation of the tangential component of velocity in 
going through the front of the type [3] 

u$ - v = u’ (9 + 6 + a’) (1.2) 
will be fulfilled. 

Here ’ is the angle between the direction of flow velocity 
the wave Front and the axis 

’ ahead of 
6 = C,q is the angle between the noFma1 to the 

shock front and the direction of the radius vector. The value of angle Ir’ 
is determined from the propagating equation of the shock_wave front 

ar / at = N (I + ‘/,j+, 

(N is the velocity of the front) through the relationship 

* = I/‘/a_ VZ-_(U (I.31 

0. Boundary conditions (1.2) at the shock fronts OB, and OBs take 
the form 

a*+ v= ul(%+al-W, ulps - v = u2 ($a + a2 +- e) (2.1) 

In terms of notation (1.1) relationships (1.3) and (2.1) when applied to 
the shock fronts 0~~ and OK= yield 

al-*= v%(n+l)Me )/%-PL as + 8 = 1/l/~ (II -+ 1) Mc v/26 - pa (2.2) 

and on fronts O& and 0~~ they yield conditions 

(P-P~)$~+v )/%(n+i)Mc=p1(oi-- 8), $l= dl/a (n f i) MO -r/26 - (P f &) (2.3) 

(p - b) %  - v v/l,+, (II + 1) MO = pa (aa + 6), $a = ti% (n + 1) MO V.26-- (CL + ~a) (2.4) 

We shall investigate the flow in the vicinity of point 
MO ?i the value of M at point 0 then u,,- 1 Conditions ?2:21si??3) 
and (2.4) on shock fronts take the I’ollowihg form-in Point 0 

al= vl/a(n+l)Mo )/~o--PL~, aa = f/‘/a (n + 1) MO -r/30 - pa (3.1) 

(1 - ~1) PI + ~0 V% (n +I) MO = why p1 = V’/a (n + 1) ~40 ‘t/260 - (PI + 1) (3.9 

(i -p1la)P2-~0 I/l/a(n +I) Mo=pa~a~ pa = V’/a(n $-I) MO Vas,-- (Pa + 1) (3.3) 



a1 + a2 -= a (3.4) 

following expression for 6, is obtained: 

In this connection 

Combining conditions (3.1) the 

2a2 
60=.2,110, 

‘,h [aZ/(n + 1) + Al, + .119]2- M1Ma 
U,= 

2a2/(n + 1) 

while ~~ and M, are determined according to (1.2) through p1 

For angles of interation a,, a,, fil, p2 and velocity 
sions 

vc we now 

a1 = 1/l/2 (0 + 1) (a - Ml), a2 = r/l/a (n + 1) (a - M2) 

(3s) 

and pe . 
have Expres- 

PI = v l/a (n + 1) (a - Ml- MO), 
~-~ -_ 

p2 = d 1/;.(;+j)(i---jf2 - hf,) 

Y,, = (1 - Mz/hfo) J’-(a - M,-Thf, - (M, / hfo) 1/ (a - hf,) / Jfol 

(3.9 

the 
Finally, combining the first conditions(3.2) and (3.3) we obtain for MO 

following equation: 

AM,s+BM$+CM,+D=O (3.7) 
with coefficients 

A = (M, - M,)2 

B = 8cM1Mz - 2 (Ml + ~1) (Ml’ + MaZ) + 8MNa 1/(c - Ml) (s - MY) (3.8) 

c = (Ml2 - M.# + 4MPMn [MI - If@ - MI) (a - Ma)1 + 

+4MIMa2 [M,- v(a-- MI)(u- M,)l ---MIMB [a+ )/(a---I)(=-Mdl 

D = 4MIMc [(MB2 - 2oM1) (MI- v(a - MI) (a - Ma)) + 

+ (~~2 - 2a~a) (M, - V(a- Ml) (a - Ma))] + 8aJfMz la (Ml + Ma) - MN81 

We shall find the condition for initial parameters M1, N, and a for which 
MO or, which is the same thing, 
the maximum value. 

the pressure at the point of interaction has 

For Equation (3.7) we have F (Ml, MS, a, MO) - 0; eliminating Ne from the 
system F’M, (M,, Ma,a, MU) = 0, NM,, Mn,a, MO) =R 
we obtaih 

KS-B3 9 
A(3AD-BBC) =T 

(K = v/B’--3AC) (3.9) 

In this connection 

MO= 
-B + 1/B2-3AC 

3A (3.10) 

ThUS, for the range of regular interaction the 
initial parameters M,, Me and o must be such 
that the left-hand side (3.9) will be greater or 
equal to g/2. 

4. 
shock 

For the case of symmetrical penetration of 
waves, when H1- NY., Equation (3.7) trans- 
into a second order equation 

MO+--* (;~+2M1]Mo+ (4.1) 

Fig. 2 

with the solution 
+ [,&(+~+&]M1=0 

MO -=- 
Ml 

(4.2) 
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The critical relationship (3.9) in this connection takes the form $aV= 2 
we have flow conditions analogous to regular reflection from a rigid 

kfi cl and 33. 

5. For examination of Equation (3.7) we introduce the parameters 

Then, for the value of the relative overpressure in the point of inter- 
action we obtain the following equation: 

A"(~)"+z?~(~)"+co(~)+ D"=O (5.2) 

with coefficients 

A"=(I -r))2, B" = 2(2a”29 - 1 + q + +@ - $J) 

C"---:a"4~-~a'2~(1+~)-f-1+~-~~2+~s+~4 

Do = q (a'* (1 + $ + 4a’*q - 1 + q -I- q2 - q31j 
The critical relationship (3.9) 

4 (34°C” - Bo2) + [9d" (3A”D” - B”C”) + 2B0312 = 0 

on substitution of coefficients (5.3) takes the form 

(5.3) 

(5.4) 

4q (q + ipcc”12 - 8q-(q + 1) (5qz -t- 6q + 5la”O + (rl - 1)’ 

(q* + 11th~” + 21418 + 1162 + l)a’8 -8 (q - 1)’ (q + 1) (q2 + f7q + %)a”+ (5.5) 

+2bl- l)e (7@ + 36q + 7) av4 - s (q - $15 (3 -/- 1)a”Z + (q - 1)‘@ = 0 

Solution (3.10) on the critical multiformity (5.5) 

MO -Be-+ y’P--3AW’ w=- 
MI 3AO (5.6) 

takes the form 

5 I 2[I~+1)(~:-1)2-2rY2~l 
Ml 3 (1 - q)2 + (5.7) 

+ ~crl--i)4fr12--+fIf--u1z?(rl -I)*(rl+1)+~‘4~~lrl-i-3)(39+1) 
3 (1 -q)’ 

By virtue of symmetry of Equation (3.7) with respect to parameters 
and M Equations (5.2), (5.5) and (5.7) are invariant with respect to 
formatfon 1 MO Mo1 

%=K' 
-_-- Ma--M1 rh, u$v=u~” z 

i.e. for Equations (5.21, (5.5) and (5.7) 
it is sufficient to examine solutions for 

Hl 
trans- 

(5.8) 

Fig. 3 Fig. 4 
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n in the range O\<ql<l; values for i<QdcQ will be expressed 
through these solutions by Equations (5.8). 

In Fig. 2 the curve of numerical solution of Equation (5.5) is presented 
which according to (4.3) goes through ov = 4 at 11 = 1 . In this connection 
we have the following solution for Equation (5.5) in the vicinity of n=1 

In Fig.3 the surface of the solution &,/% 
of Equation (5.2) is constructed. Separate sec- 
tions of this surface by planes n = const are 
presented in For n = 0 we have a con- 
stant value 1 which corresponds to the 
case of zero intensity of the wave OK, . For 
n = 1 we obtain the known solution (4.2) for 
symmetrical regular interaction cl and 33. For 
11-m the solution, according to (5.8). tends 
to the crlindrical surface M-/N.= n which cor- 
responds-to the case of sero~~%&nsity of the 
wave Ox,. In Fig.5, the form of the section 
of the solution surface by the cylindrical sur- 
face which oasses throuah the critical multi- 
formity parallel to the-axis N,/Nl, is given 
along axis ov . Fig. 5 

The author thanks S.V. Fal'kovich for advice in discussion on this paper. 
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